Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 170: 578-595, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052152

RESUMO

Principal Component Analysis (PCA) and its nonlinear extension Kernel PCA (KPCA) are widely used across science and industry for data analysis and dimensionality reduction. Modern deep learning tools have achieved great empirical success, but a framework for deep principal component analysis is still lacking. Here we develop a deep kernel PCA methodology (DKPCA) to extract multiple levels of the most informative components of the data. Our scheme can effectively identify new hierarchical variables, called deep principal components, capturing the main characteristics of high-dimensional data through a simple and interpretable numerical optimization. We couple the principal components of multiple KPCA levels, theoretically showing that DKPCA creates both forward and backward dependency across levels, which has not been explored in kernel methods and yet is crucial to extract more informative features. Various experimental evaluations on multiple data types show that DKPCA finds more efficient and disentangled representations with higher explained variance in fewer principal components, compared to the shallow KPCA. We demonstrate that our method allows for effective hierarchical data exploration, with the ability to separate the key generative factors of the input data both for large datasets and when few training samples are available. Overall, DKPCA can facilitate the extraction of useful patterns from high-dimensional data by learning more informative features organized in different levels, giving diversified aspects to explore the variation factors in the data, while maintaining a simple mathematical formulation.


Assuntos
Algoritmos , Análise de Componente Principal
2.
Neural Netw ; 142: 661-679, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34399376

RESUMO

We introduce Constr-DRKM, a deep kernel method for the unsupervised learning of disentangled data representations. We propose augmenting the original deep restricted kernel machine formulation for kernel PCA by orthogonality constraints on the latent variables to promote disentanglement and to make it possible to carry out optimization without first defining a stabilized objective. After discussing a number of algorithms for end-to-end training, we quantitatively evaluate the proposed method's effectiveness in disentangled feature learning. We demonstrate on four benchmark datasets that this approach performs similarly overall to ß-VAE on several disentanglement metrics when few training points are available while being less sensitive to randomness and hyperparameter selection than ß-VAE. We also present a deterministic initialization of Constr-DRKM's training algorithm that significantly improves the reproducibility of the results. Finally, we empirically evaluate and discuss the role of the number of layers in the proposed methodology, examining the influence of each principal component in every layer and showing that components in lower layers act as local feature detectors capturing the broad trends of the data distribution, while components in deeper layers use the representation learned by previous layers and more accurately reproduce higher-level features.


Assuntos
Algoritmos , Aprendizado de Máquina não Supervisionado , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...